Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity

Authors: Yoshihisa Nasa; Gozoh Tsujimoto; Ryo Oikawa; Akito Tanoue; Yasushi Kiyono; Tetsuya Adachi; Taka-aki Koshimizu; +6 Authors

V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity

Abstract

Arginine-vasopressin (AVP) is a hormone that is essential for both osmotic and cardiovascular homeostasis, and exerts important physiological regulation through three distinct receptors, V1a, V1b, and V2. Although AVP is used clinically as a potent vasoconstrictor (V1a receptor-mediated) in patients with circulatory shock, the physiological role of vasopressin V1a receptors in blood pressure (BP) homeostasis is ill-defined. In this study, we investigated the functional roles of the V1a receptor in cardiovascular homeostasis using gene targeting. The basal BP of conscious mutant mice lacking the V1a receptor gene (V1a −/− ) was significantly ( P < 0.001) lower compared to the wild-type mice (V1a +/+ ) without a notable change in heart rate. There was no significant alteration in cardiac functions as assessed by echocardiogram in the mutant mice. AVP-induced vasopressor responses were abolished in the mutant mice; rather, AVP caused a decrease in BP, which occurred in part through V2 receptor-mediated release of nitric oxide from the vascular endothelium. Arterial baroreceptor reflexes were markedly impaired in mutant mice, consistent with a loss of V1a receptors in the central area of baroreflex control. Notably, mutant mice showed a significant 9% reduction in circulating blood volume. Furthermore, mutant mice had normal plasma AVP levels and a normal AVP secretory response, but had significantly lower adrenocortical responsiveness to adrenocorticotropic hormone. Taken together, these results indicate that the V1a receptor plays an important role in normal resting arterial BP regulation mainly by its regulation of circulating blood volume and baroreflex sensitivity.

Keywords

Mice, Knockout, Receptors, Vasopressin, Blood Volume, Hemodynamics, Blood Pressure, Arteries, Baroreflex, Urinalysis, Arginine Vasopressin, Mice, Echocardiography, Heart Rate, Adrenal Cortex, Animals, Homeostasis, Humans, Vascular Resistance, Blood Chemical Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    158
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
158
Top 10%
Top 10%
Top 1%
bronze