Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proteins Structure F...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proteins Structure Function and Bioinformatics
Article . 1997 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A molecular dynamics simulation study of segment B1 of protein G

Authors: F B, Sheinerman; C L, Brooks;

A molecular dynamics simulation study of segment B1 of protein G

Abstract

The immunoglobulin binding protein, segment B1 of protein G, has been studied experimentally as a paradigm for protein folding. This protein consists of 56 residues, includes both beta sheet and alpha helix and contains neither disulfide bonds nor proline residues. We report an all-atom molecular dynamics study of the native manifold of the protein in explicit solvent. A 2-ns simulation starting from the nuclear magnetic resonance (NMR) structure and a 1-ns control simulation starting from the x-ray structure were performed. The difference between average structures calculated over the equilibrium portion of trajectories is smaller than the difference between their starting conformations. These simulation averages are structurally similar to the x-ray structure and differ in systematic ways from the NMR-determined structure. Partitioning of the fluctuations into fast ( 20 ps) components indicates that the beta sheet displays greater long-time mobility than does the alpha helix. Clore and Gronenborn [J. Mol. Biol. 223:853-856, 1992] detected two long-residence water molecules by NMR in a solution structure of segment B1 of protein G. Both molecules were found in the fully exposed regions and were proposed to be stabilized by bifurcated hydrogen bonds to the protein backbone. One of these long-residence water molecules, found near an exposed loop region, is identified in both of our simulations, and is seen to be involved in the formation of a stable water-mediated hydrogen bond bridge. The second water molecule, located near the middle of the alpha helix, is not seen with an exceptional residence time in either as a result of the conformation being closer to the x-ray structure in this region of the protein.

Related Organizations
Keywords

Magnetic Resonance Spectroscopy, Protein Conformation, Water, Nerve Tissue Proteins, Crystallography, X-Ray

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!