Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2013 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Signal Regulatory Protein α Is Associated With Tumor-Polarized Macrophages Phenotype Switch and Plays a Pivotal Role in Tumor Progression

Authors: Min Wang; Chun Yang; Zhi-Wen Ding; Yexiong Tan; Bo Zhang; Jian Zhang; Yu-Fei Pan; +3 Authors

Signal Regulatory Protein α Is Associated With Tumor-Polarized Macrophages Phenotype Switch and Plays a Pivotal Role in Tumor Progression

Abstract

Macrophages (Mψ) are the major component of infiltrating leukocytes in tumors and exhibit distinct phenotypes according to the microenvironment. We have recently found that signal regulatory protein α (SIRPα), the inhibitory molecule expressed on myeloid cells, plays a critical role in controlling innate immune activation. Here, we identify that SIRPα is down-regulated on monocytes/Mψ isolated from peritumoral areas of hepatocellular carcinoma (HCC) samples, while its level is moderately recovered in intratumor Mψ. In vitro assays demonstrate that SIRPα expression is significantly reduced on Mψ when cocultured with hepatoma cells. This reduction is partly due to the soluble factors in the tumor microenvironment. Knockdown (KD) of SIRPα prolongs activation of nuclear factor kappa B (NF-κB) and PI3K-Akt pathways as Mψ encounter tumor cells, leading to an increased capacity of Mψ for migration, survival, and proinflammatory cytokine production. Enhanced Stat3 and impaired Stat1 phosphorylation are also observed in tumor-exposed SIRPα-KD Mψ. Adoptive transfer with SIRPα-KD Mψ accelerates mouse hepatoma cells growth in vivo by remolding the inflammatory microenvironment and promoting angiogenesis. SIRPα accomplishes this partly through its sequestration of the signal transducer Src homology 2-containing phosphotyrosine phosphatase (SHP2) from IκB kinase β (IKKβ) and PI3K regulatory subunit p85 (PI3Kp85). Conclusion : These findings suggest that SIRPα functions as an important modulator of tumor-polarized Mψ in hepatoma, and the reduction of SIRPα is a novel strategy used by tumor cells to benefit their behavior. Therefore, SIRPα could be utilized as a potential target for HCC therapy. (Hepatology 2013;58:680–691)

Related Organizations
Keywords

Male, Mice, Inbred BALB C, Carcinoma, Hepatocellular, Macrophages, Liver Neoplasms, NF-kappa B, Antigens, Differentiation, Coculture Techniques, Mice, Inbred C57BL, Disease Models, Animal, Mice, Phosphatidylinositol 3-Kinases, Phenotype, Cell Movement, Disease Progression, Animals, Humans, RNA, Small Interfering, Receptors, Immunologic, Proto-Oncogene Proteins c-akt

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
bronze