Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the O...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the O S Popov ОNAT
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

JOB ORDER INPUT FOR EFFICIENT EXACT MINIMIZATION OF TOTAL TARDINESS IN TIGHT-TARDY PROGRESSIVE SINGLE MACHINE SCHEDULING WITH IDLING-FREE PREEMPTIONS

Authors: V.V. Romanuke;

JOB ORDER INPUT FOR EFFICIENT EXACT MINIMIZATION OF TOTAL TARDINESS IN TIGHT-TARDY PROGRESSIVE SINGLE MACHINE SCHEDULING WITH IDLING-FREE PREEMPTIONS

Abstract

Abstract. A schedule ensuring the exactly minimal total tardiness can be found with the respective integer linear programming problem. An open question is whether the exact schedule computation time changes if the job release dates are input into the model in reverse order. The goal is to ascertain whether the job order in tight-tardy progressive single machine scheduling with idling-free preemptions influences the speed of computing the exact solution. The Boolean linear programming model provided for finding schedules with the minimal total tardiness is used. To achieve the said goal, a computational study is carried out with the purpose of estimating the averaged computation time for both ascending and descending orders of job release dates. Instances of the job scheduling problem are generated so that schedules which can be obtained trivially, without the exact model, are excluded. As in the case of equal-length jobs, it has been ascertained that the job order really influences the speed of computing schedules whose total tardiness is minimal. Scheduling two to five jobs is executed on average faster by the descending job order input, where 1 to 3 % speed-up is expected. Further increment of the number of jobs to be scheduled cannot guarantee any speed-up even on average. This result is similar to that in the case of equal-length jobs, but there is no regularity in such an efficient job order input. Without any assurance for a single job scheduling problem, the efficient exact minimization of total tardiness by the descending job order input must be treated as on average only.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze