Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Transactions on Cryp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Transactions on Cryptographic Hardware and Embedded Systems
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through Memory-centric Optimization with GPUs

Authors: Wonkyung Jung; Sangpyo Kim; Jung Ho Ahn; Jung Hee Cheon; Younho Lee;

Over 100x Faster Bootstrapping in Fully Homomorphic Encryption through Memory-centric Optimization with GPUs

Abstract

Fully Homomorphic encryption (FHE) has been gaining in popularity as an emerging means of enabling an unlimited number of operations in an encrypted message without decryption. A major drawback of FHE is its high computational cost. Specifically, a bootstrapping step that refreshes the noise accumulated through consequent FHE operations on the ciphertext can even take minutes of time. This significantly limits the practical use of FHE in numerous real applications.By exploiting the massive parallelism available in FHE, we demonstrate the first instance of the implementation of a GPU for bootstrapping CKKS, one of the most promising FHE schemes supporting the arithmetic of approximate numbers. Through analyzing CKKS operations, we discover that the major performance bottleneck is their high main-memory bandwidth requirement, which is exacerbated by leveraging existing optimizations targeted to reduce the required computation. These observations motivate us to utilize memory-centric optimizations such as kernel fusion and reordering primary functions extensively.Our GPU implementation shows a 7.02× speedup for a single CKKS multiplication compared to the state-of-the-art GPU implementation and an amortized bootstrapping time of 0.423us per bit, which corresponds to a speedup of 257× over a single-threaded CPU implementation. By applying this to logistic regression model training, we achieved a 40.0× speedup compared to the previous 8-thread CPU implementation with the same data.

Related Organizations
Keywords

TK7885-7895, Computer engineering. Computer hardware, Fully Homomorphic Encryption, Kernel fusion, GPU, Bootstrapping, Logistic regression, Information technology, T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 1%
Top 10%
Top 1%
Published in a Diamond OA journal