Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures

Authors: Goodarz Ahmadi; Khosrow Jafarpur; Haleh Shafeie; Omid Abouali;

Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures

Abstract

Abstract This paper presents a numerical study of laminar forced convection in heat sinks with micro pin-fin structure. A water cooled heat sink on a 1 cm × 1 cm substrate has been studied. Both pin-finned microchannel heat sinks (MCHSs) and pin fin heat sinks (PFHSs) are investigated. The distribution patterns of the fabricated pin-fins are either oblique or staggered. The Navier–Stokes and energy equations for the liquid region and the energy equation for the solid region are solved simultaneously to find the hydraulic and heat transfer performance of the heat sinks. The heat removal fluxes in finned MCHSs and PFHSs with different height of micro pin fins are compared with that in an optimum simple MCHS in equal pumping powers. It is shown that for the same pumping powers, the heat removal of the finned heat sinks is lower than that in the optimum simple MCHSs at medium and high pumping powers. The finned heat sinks, however, perform slightly better than an optimum simple MCHS for small pumping powers. It is also shown that studied heat sinks can be optimized using entropy generation minimization.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!