Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JMIR Medical Informa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JMIR Medical Informatics
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JMIR Medical Informatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JMIR Medical Informatics
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/yf...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/es...
Other literature type . 2020
Data sources: Datacite
versions View all 6 versions
addClaim

Global Infectious Disease Surveillance and Case Tracking System for COVID-19: Development Study

النظام العالمي لمراقبة الأمراض المعدية وتتبع حالات كوفيد-19: دراسة التنمية
Authors: Hsiu-An Lee; Hsin-Hua Kung; Yuarn-Jang Lee; Jane C-J Chao; Jai Ganesh Udayasankaran; Hueng-Chuen Fan; Kwok-Keung Ng; +4 Authors

Global Infectious Disease Surveillance and Case Tracking System for COVID-19: Development Study

Abstract

Background COVID-19 has affected more than 180 countries and is the first known pandemic to be caused by a new virus. COVID-19’s emergence and rapid spread is a global public health and economic crisis. However, investigations into the disease, patient-tracking mechanisms, and case report transmissions are both labor-intensive and slow. Objective The pandemic has overwhelmed health care systems, forcing hospitals and medical facilities to find effective ways to share data. This study aims to design a global infectious disease surveillance and case tracking system that can facilitate the detection and control of COVID-19. Methods The International Patient Summary (IPS; an electronic health record that contains essential health care information about a patient) was used. The IPS was designed to support the used case scenario for unplanned cross-border care. The design, scope, utility, and potential for reuse of the IPS for unplanned cross-border care make it suitable for situations like COVID-19. The Fast Healthcare Interoperability Resources confirmed that IPS data, which includes symptoms, therapies, medications, and laboratory data, can be efficiently transferred and exchanged on the system for easy access by physicians. To protect privacy, patient data are deidentified. All systems are protected by blockchain architecture, including data encryption, validation, and exchange of records. Results To achieve worldwide COVID-19 surveillance, a global infectious disease information exchange must be enacted. The COVID-19 surveillance system was designed based on blockchain architecture. The IPS was used to exchange case study information among physicians. After being verified, physicians can upload IPS files and receive IPS data from other global cases. The system includes a daily IPS uploading and enhancement plan, which covers real-time uploading through the interoperation of the clinic system, with the module based on the Open Application Programming Interface architecture. Through the treatment of different cases, drug treatments, and the exchange of treatment results, the disease spread can be controlled, and treatment methods can be funded. In the Infectious Disease Case Tracking module, we can track the moving paths of infectious disease cases. The location information recorded in the blockchain is used to check the locations of different cases. The Case Tracking module was established for the Centers for Disease Control and Prevention to track cases and prevent disease spread. Conclusions We created the IPS of infectious diseases for physicians treating patients with COVID-19. Our system can help health authorities respond quickly to the transmission and spread of unknown diseases, and provides a system for information retrieval on disease transmission. In addition, this system can help researchers form trials and analyze data from different countries. A common forum to facilitate the mutual sharing of experiences, best practices, therapies, useful medications, and clinical intervention outcomes from research in various countries could help control an unknown virus. This system could be an effective tool for global collaboration in evidence-based efforts to fight COVID-19.

Keywords

FOS: Computer and information sciences, Radiology, Nuclear Medicine and Imaging, Economics, Computer applications to medicine. Medical informatics, R858-859.7, Global health, Medical emergency, International Health Regulations, Infectious disease (medical specialty), Nursing, FOS: Health sciences, Role of Digital Technologies in Pandemic Contact Tracing, Health Sciences, Pathology, Business, Disease, Economic growth, Contact Tracing Apps, Original Paper, Public health, Health information exchange, Pandemic, Disease surveillance, Blockchain and Internet of Things Integration, Health care, Upload, Applications of Deep Learning in Medical Imaging, Interoperability, Computer science, Coronavirus disease 2019 (COVID-19), World Wide Web, Health information, Computer Science, Physical Sciences, Medicine, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Green
gold