Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1993 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach.

Authors: Young Joon Kim; Bruce S. Baker;

Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach.

Abstract

Proteins with RNA recognition motifs (RRMs) have important roles in a great many aspects of RNA metabolism. However, this family has yet to be systematically studied in any single organism. In order to investigate the size of the RRM gene family in Drosophila melanogaster and to clone members of this family, we used a polymerase chain reaction (PCR) with highly degenerate oligonucleotides to amplify DNA fragments between the RNP-1 and RNP-2 consensus sequences of the RRM proteins. Cloning and sequencing of 124 PCR products revealed 12 different RRM sequences (RRM1 to RRM12). When PCR products were used as probes in genomic Southern and Northern (RNA) analyses, 16 restriction fragments and 25 transcripts, respectively, were detected. Since the combinations of nucleotide sequences represented in the PCR primers correspond to only 4% of the RRM sequences inferred to be possible from known RRM sequences, we estimate the size of the RRM gene family in the order of three hundred genes in flies. In order to gain insight into the possible functions of the genes encoding the RRMs, we analyzed the sequence similarities between the 12 RRMs and 62 RRM sequences of known proteins. This analysis showed that the RRMs of functionally related proteins have similar sequences and are clustered together in the RRM gene tree. On the basis of this observation, the RRMs can be divided into three groups: a heterogeneous nuclear ribonucleoprotein type, a splicing regulator type, and a development-specific factor type. This result suggests that we have isolated good candidates for both housekeeping and developmentally important genes involved in RNA metabolism.

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Gene Expression, RNA-Binding Proteins, Genes, Insect, Polymerase Chain Reaction, Drosophila melanogaster, Oligodeoxyribonucleotides, Ribonucleoproteins, Multigene Family, Consensus Sequence, Animals, Amino Acid Sequence, RNA, Messenger, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 1%
bronze