Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Flyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fly
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A method for reversible drug delivery to internal tissues ofDrosophilaembryos

Authors: Victoria K, Schulman; Eric S, Folker; Mary K, Baylies;

A method for reversible drug delivery to internal tissues ofDrosophilaembryos

Abstract

Drosophila melanogaster is a powerful model organism to elucidate basic cellular mechanisms of development. Indeed, much of our understanding of genetic pathways comes from work in Drosophila. However, mutations in many critical genes cause early embryonic lethality; thus, it is difficult to study the role of proteins that are required for early fundamental processes during later embryonic stages. We have therefore developed a method to reversibly deliver drugs to internal tissues of stage 15-16 Drosophila embryos using a 1:1 combination of D-limonene and heptane (LH). Specifically, delivery of Nocodazole was shown to be effective as evidenced by the significant decrease in microtubule density seen in muscle cells. Following complete depolymerization of the microtubule cytoskeleton, removing the Nocodazole and washing for 10 min was sufficient for the microtubule network to be re-established, indicating that drug delivery is reversible. Additionally, the morphology of LH-treated embryos resembled that of untreated controls, and embryo viability post-treatment with LH was significantly increased compared with previously reported permeabilization techniques. These advances in embryo permeabilization provide a means to disrupt protein function in vivo with high temporally specificity, bypassing the complications associated with genetic disruptions as they relate to the study of late-stage developmental mechanisms.

Related Organizations
Keywords

Embryo, Nonmammalian, Terpenes, Muscles, Nocodazole, Permeability, Heptanes, Drug Combinations, Drug Delivery Systems, Cyclohexenes, Animals, Drosophila, Limonene

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
gold