Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epigenetics and the control of epithelial sodium channel expression in collecting duct

Authors: Zhang, Dongyu; Yu, Zhi-yuan; Cruz, Pedro; Kong, Qun; Li, Shiyu; Kone, Bruce C.;

Epigenetics and the control of epithelial sodium channel expression in collecting duct

Abstract

In eukaryotic nuclei, genomic DNA is compacted with histone and nonhistone proteins into a dynamic polymer termed chromatin. Reorganization of chromatin structure through histone modifications, the action of chromatin factors, or DNA methylation, can profoundly change gene expression. These epigenetic modifications allow heritable and potentially reversible changes in gene functioning to occur without altering the DNA sequence, thus extending the information potential of the genetic code. This review provides an introduction to epigenetic concepts for renal investigators and an overview of our work detailing an epigenetic pathway for aldosterone signaling and the control of epithelial Na(+) channel-alpha (ENaCalpha) subunit gene expression in the collecting duct. This new pathway involves a nuclear repressor complex, consisting of histone H3 Lys-79 methyltransferase disruptor of telomeric silencing-1a (Dot1a), ALL1 fused gene from chromosome 9 (Af9), a sequence-specific DNA-binding protein that binds the ENaCalpha promoter, and potentially other nuclear proteins. This complex regulates targeted histone H3 Lys-79 methylation of chromatin associated with the ENaCalpha promoter, thereby suppressing its transcriptional activity. Aldosterone disrupts the Dot1a-Af9 interaction by serum- and glucocorticoid-induced kinase-1 phosphorylation of Af9, and inhibits Dot1a and Af9 expression, resulting in histone H3 Lys-79 hypomethylation at specific subregions, and derepression of the ENaCalpha promoter. The Dot1a-Af9 pathway may also be involved in the control of genes implicated in renal fibrosis and hypertension.

Related Organizations
Keywords

aldosterone, sodium transport, histone, Epigenesis, Genetic, Histones, Mice, Gene Expression Regulation, Nephrology, chromatin, Animals, Kidney Tubules, Collecting, transcription, gene regulation, Epithelial Sodium Channels, Aldosterone, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
hybrid