
doi: 10.1093/mp/ssn031
pmid: 19825572
Magnesium is an abundant divalent cation in plant cells and plays a critical role in many physiological processes. We have previously described the identification of a 10-member Arabidopsis gene family encoding putative magnesium transport (MGT) proteins. Here, we report that a member of the MGT family, AtMGT5, functions as a dual-functional Mg-transporter that operates in a concentration-dependent manner, namely it serves as a Mg-importer at micromolar levels and facilitates the efflux in the millimolar range. The AtMGT5 protein is localized in the mitochondria, suggesting that AtMGT5 mediates Mg-trafficking between the cytosol and mitochondria. The AtMGT5 gene was exclusively expressed in anthers at early stages of flower development. Examination of two independent T-DNA insertional mutants of AtMGT5 gene demonstrated that AtMGT5 played an essential role for pollen development and male fertility. This study suggests a critical role for Mg(2+) transport between cytosol and mitochondria in male gametogenesis in plants.
Arabidopsis Proteins, Genetic Complementation Test, Arabidopsis, Membrane Transport Proteins, Plant Science, Genes, Plant, Mitochondria, Protein Transport, Phenotype, Gene Expression Regulation, Plant, Nickel, Organ Specificity, Pollen, Magnesium, Molecular Biology
Arabidopsis Proteins, Genetic Complementation Test, Arabidopsis, Membrane Transport Proteins, Plant Science, Genes, Plant, Mitochondria, Protein Transport, Phenotype, Gene Expression Regulation, Plant, Nickel, Organ Specificity, Pollen, Magnesium, Molecular Biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 91 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
