
doi: 10.1002/humu.22103
pmid: 22508176
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.
Comparative Genomic Hybridization, TRPP Cation Channels, DNA Mutational Analysis, Mutation, Mutation, Missense, Humans, Female, Polycystic Kidney, Autosomal Dominant, Multiplex Polymerase Chain Reaction
Comparative Genomic Hybridization, TRPP Cation Channels, DNA Mutational Analysis, Mutation, Mutation, Missense, Humans, Female, Polycystic Kidney, Autosomal Dominant, Multiplex Polymerase Chain Reaction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 154 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
