
pmid: 11180965
Small hydrophobic hormones like steroids control many tissue-specific physiological responses in higher organisms. Hormone response is characterized by changes in gene expression, but the molecular details connecting target-gene transcription to the physiology of responding cells remain elusive. The salivary glands of Drosophila provide an ideal model system to investigate gaps in our knowledge, because exposure to the steroid 20-hydroxyecdysone (20E) leads to a robust regulated secretion of glue granules after a stereotypical pattern of puffs (activated 20E-regulated genes) forms on the polytene chromosomes. Here, we describe a convenient bioassay for glue secretion and use it to analyze mutants in components of the puffing hierarchy. We show that 20E mediates secretion through the EcR/USP receptor, and two early-gene products, the rbp(+) function of BR-C and the Ca2+ binding protein E63-1, are involved. Furthermore, we demonstrate that 20E treatment of salivary glands leads to Ca2+ elevations by a genomic mechanism and that elevated Ca2+ levels are required for ectopically produced E63-1 to drive secretion. The results presented establish a connection between 20E exposure and changes in Ca2+ levels that are mediated by Ca2+ effector proteins, and thus establish a mechanistic framework for future studies.
Receptors, Steroid, genetic analysis, Cell Biology, green glue, E63-1, Exocytosis, Salivary Glands, glue secretion, Animals, Genetically Modified, Ecdysterone, ecdysteroid response, steroid hormone, RNAi, Animals, calcium changes, Calcium, Drosophila, Molecular Biology, Developmental Biology
Receptors, Steroid, genetic analysis, Cell Biology, green glue, E63-1, Exocytosis, Salivary Glands, glue secretion, Animals, Genetically Modified, Ecdysterone, ecdysteroid response, steroid hormone, RNAi, Animals, calcium changes, Calcium, Drosophila, Molecular Biology, Developmental Biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 116 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
