Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glue Secretion in the Drosophila Salivary Gland: A Model for Steroid-Regulated Exocytosis

Authors: Biyasheva, Assel; Do, Thuy-Vy; Lu, Yun; Vaskova, Martina; Andres, Andrew J.;

Glue Secretion in the Drosophila Salivary Gland: A Model for Steroid-Regulated Exocytosis

Abstract

Small hydrophobic hormones like steroids control many tissue-specific physiological responses in higher organisms. Hormone response is characterized by changes in gene expression, but the molecular details connecting target-gene transcription to the physiology of responding cells remain elusive. The salivary glands of Drosophila provide an ideal model system to investigate gaps in our knowledge, because exposure to the steroid 20-hydroxyecdysone (20E) leads to a robust regulated secretion of glue granules after a stereotypical pattern of puffs (activated 20E-regulated genes) forms on the polytene chromosomes. Here, we describe a convenient bioassay for glue secretion and use it to analyze mutants in components of the puffing hierarchy. We show that 20E mediates secretion through the EcR/USP receptor, and two early-gene products, the rbp(+) function of BR-C and the Ca2+ binding protein E63-1, are involved. Furthermore, we demonstrate that 20E treatment of salivary glands leads to Ca2+ elevations by a genomic mechanism and that elevated Ca2+ levels are required for ectopically produced E63-1 to drive secretion. The results presented establish a connection between 20E exposure and changes in Ca2+ levels that are mediated by Ca2+ effector proteins, and thus establish a mechanistic framework for future studies.

Keywords

Receptors, Steroid, genetic analysis, Cell Biology, green glue, E63-1, Exocytosis, Salivary Glands, glue secretion, Animals, Genetically Modified, Ecdysterone, ecdysteroid response, steroid hormone, RNAi, Animals, calcium changes, Calcium, Drosophila, Molecular Biology, Developmental Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 1%
Top 10%
Top 10%
hybrid