Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast and Accurate Lane Detection via Frequency Domain Learning

Authors: Yulin He; Wei Chen; Zhengfa Liang; Dan Chen; Yusong Tan; Xin Luo; Chen Li; +1 Authors

Fast and Accurate Lane Detection via Frequency Domain Learning

Abstract

It is desirable to maintain both high accuracy and runtime efficiency in lane detection. State-of-the-art methods mainly address the efficiency problem by direct compression of high-dimensional features. These methods usually suffer from information loss and cannot achieve satisfactory accuracy performance. To ensure the diversity of features and subsequently maintain information as much as possible, we introduce multi-frequency analysis into lane detection. Specifically, we propose a multi-spectral feature compressor (MSFC) based on two-dimensional (2D) discrete cosine transform (DCT) to compress features while preserving diversity information. We group features and associate each group with an individual frequency component, which incurs only 1/7 overhead of one-dimensional convolution operation but preserves more information. Moreover, to further enhance the discriminability of features, we design a multi-spectral lane feature aggregator (MSFA) based on one-dimensional (1D) DCT to aggregate features from each lane according to their corresponding frequency components. The proposed method outperforms the state-of-the-art methods (including LaneATT and UFLD) on TuSimple, CULane, and LLAMAS benchmarks. For example, our method achieves 76.32% F1 at 237 FPS and 76.98% F1 at 164 FPS on CULane, which is 1.23% and 0.30% higher than LaneATT. Our code and models are available at https://github.com/harrylin-hyl/MSLD.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!