Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Biochemistry
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Biochemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines

Authors: Hanna Piotrowska; Marek Murias; Malgorzata Kucinska;

Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines

Abstract

The expression of P450 enzymes and antioxidative enzymes in tumour tissue can have a major impact on the responsiveness of tumours to cancer chemotherapeutic drugs, therefore such information may be very precious when experiments are designed. The compressive information, concerning the expression of drug metabolism enzymes or antioxidative enzymes is still lacking, therefore in this study the expression of CYP1A1, CYP1B1 and mitochondrial superoxide dismutase MnSOD (both mRNA and protein) in a panel of eight commonly used cancer cell lines, representing four tumour tissues was assayed. In the study two ovarian cancer cell lines A2780 and SKOV-3, two colorectal cancer LOVO and DLD-1, two breast cancer derived MCF-7 and MDA-MB-231 and two cervical cancer cell lines HeLa and C33A were employed. The relatively high expression of all assayed enzymes was shown in MDA-MB-231 breast cancer cells, lack of cancer cell specific CYP1B1 protein was discovered in LOVO colorectal cells. In order to test possible correlation between expression of CYP1A1, CYP1B1 and MnSOD and modulators of their activity, cytotoxicity of resveratrol and its promising hydroxylated analogue 3,3',4,4',5,5'-trans-hexahydroxystilbene against cell lines used in experiment was assayed. The relatively high correlation was found between IC50 values calculated for 3,3',4,4',5,5'-trans-hexahydroxystilbene and expression of MnSOD (r = 0.6562).

Related Organizations
Keywords

Cell Death, Superoxide Dismutase, Clinical Biochemistry, Cell Biology, Pyrogallol, Article, Gene Expression Regulation, Neoplastic, Inhibitory Concentration 50, Resveratrol, Cell Line, Tumor, Cytochrome P-450 CYP1B1, Stilbenes, Cytochrome P-450 CYP1A1, Humans, Aryl Hydrocarbon Hydroxylases, Molecular Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Green
hybrid