Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1974 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alterations in Glucose Metabolism in Chick-Embryo Cells Transformed by Rous Sarcoma Virus: Intracellular Levels of Glycolytic Intermediates

Authors: V N, Singh; M, Singh; J T, August; B L, Horecker;

Alterations in Glucose Metabolism in Chick-Embryo Cells Transformed by Rous Sarcoma Virus: Intracellular Levels of Glycolytic Intermediates

Abstract

Chick-embryo cells, transformed with Rous sarcoma virus, show enhanced rates of sugar transport and glycolysis. Determination of intracellular concentrations of glycolytic intermediates suggests that the enhanced glycolytic flux is due to increased activities of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), phosphofructokinase, (ATP:D-fructose-1-phosphate 6-phosphotransferase, EC 2.7.1.56), and pyruvate kinase (ATP:pyruvate 2- O -phosphotransferase, EC 2.7.1.40), and not directly to the increased glucose transport. This conclusion is supported by the finding that the intracellular concentration of free glucose is decreased, rather than increased, in the transformed cells. The present observations suggest that the increased glycolytic flux is related to an increased rate of phosphorylation of glucose, and that hexokinase in the transformed cells is at least partly released from its normal control mechanism involving feedback inhibition by glucose-6- P .

Related Organizations
Keywords

Phosphofructokinase-1, Pyruvate Kinase, Chick Embryo, Deoxyglucose, Cell Line, Cell Transformation, Neoplastic, Glucose, Avian Sarcoma Viruses, Hexokinase, Animals, Glycolysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 10%
Top 1%
Top 10%
bronze