
We analyze the unit-demand Euclidean vehicle routeing problem, where n customers are modeled as independent, identically distributed uniform points and have unit demand. We show new lower bounds on the optimal cost for the metric vehicle routeing problem and analyze them in this setting. We prove that there exists a constant ĉ > 0 such that the iterated tour partitioning heuristic given by Haimovich and Rinnooy Kan (1985) is a (2 - ĉ)-approximation algorithm with probability arbitrarily close to 1 as the number of customers goes to ∞. It has been a longstanding open problem as to whether one can improve upon the factor of 2 given by Haimovich and Rinnooy Kan. We also generalize this, and previous results, to the multidepot case.
Transportation, logistics and supply chain management, Vehicle routing problem, heuristic, Analysis of algorithms, probabilistic analysis of algorithms
Transportation, logistics and supply chain management, Vehicle routing problem, heuristic, Analysis of algorithms, probabilistic analysis of algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
