
doi: 10.1101/115204
AbstractNeurosecretory centres in animal brains use peptidergic signalling to influence physiology and behaviour. Understanding neurosecretory centre function requires mapping cell types, synapses, and peptidergic networks. Here we use electron microscopy and gene expression mapping to analyse the synaptic and peptidergic connectome of an entire neurosecretory centre. We mapped 78 neurosecretory neurons in the brain of larvalPlatynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory organ expressing many neuropeptides, including hypothalamic peptide orthologues and their receptors. Analysis of peptide-receptor pairs revealed sparsely connected networks linking specific neuronal subsets. We experimentally analysed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signalling. Our study uncovered extensive non-synaptic signalling within a neurosecretory centre and its connection to the synaptic brain.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
