Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Immunol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Immunology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Immunology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Immunology
Article . 2021
Data sources: DOAJ
versions View all 4 versions
addClaim

An HIV Vaccine Protective Allele in FCGR2C Associates With Increased Odds of Perinatal HIV Acquisition

Authors: Joy Ebonwu; Joy Ebonwu; Ria Lassaunière; Maria Paximadis; Maria Paximadis; Mark Goosen; Mark Goosen; +8 Authors

An HIV Vaccine Protective Allele in FCGR2C Associates With Increased Odds of Perinatal HIV Acquisition

Abstract

In the Thai RV144 HIV-1 vaccine trial, a three-variant haplotype within the Fc gamma receptor 2C gene (FCGR2C) reduced the risk of HIV-1 acquisition. A follow-on trial, HVTN702, of a similar vaccine candidate found no efficacy in South Africa, where the predominant population is polymorphic for only a single variant in the haplotype, c.134-96C>T (rs114945036). To investigate a role for this variant in HIV-1 acquisition in South Africans, we used the model of maternal-infant HIV-1 transmission. A nested case-control study was conducted of infants born to mothers living with HIV-1, comparing children with perinatally-acquired HIV-1 (cases, n = 176) to HIV-1-exposed uninfected children (controls, n = 349). All had received nevirapine for prevention of mother-to-child transmission. The FCGR2C copy number and expression variants (c.−386G>C, c.−120A>T c.169T>C, and c.798+1A>G) were determined using a multiplex ligation-dependent probe amplification assay and the c.134-96C>T genotype with Sanger sequencing. The copy number, genotype and allele carriage were compared between groups using univariate and multivariate logistic regression. The FCGR2C c.134-96C>T genotype distribution and copy number differed significantly between HIV-1 cases and exposed-uninfected controls (P = 0.002, PBonf = 0.032 and P = 0.010, PBonf = > 0.05, respectively). The FCGR2C c.134-96T allele was overrepresented in the cases compared to the controls (58% vs 42%; P = 0.001, PBonf = 0.016). Adjusting for birthweight and FCGR2C copy number, perinatal HIV-1 acquisition was associated with the c.134-96C>T (AOR = 1.89; 95% CI 1.25-2.87; P = 0.003, PBonf = 0.048) and c.169C>T (AOR = 2.39; 95% CI 1.45-3.95; P = 0.001, PBonf = 0.016) minor alleles but not the promoter variant at position c.−386G>C. The c.134-96C>T variant was in strong linkage disequilibrium with the c.169C>T variant, but remained significantly associated with perinatal acquisition when adjusted for c.169C>T in multivariate analysis. In contrast to the protective effect observed in the Thai RV144 trial, we found the FCGR2C variant c.134-96T-allele associated with increased odds of perinatal HIV-1 acquisition in South African children. These findings, taken together with a similar deleterious association found with HIV-1 disease progression in South African adults, highlight the importance of elucidating the functional relevance of this variant in different populations and vaccination/disease contexts.

Keywords

genetic variant, gene copy number, Male, Fc gamma receptor, DNA Copy Number Variations, Genotype, Immunology, HIV Infections, Polymorphism, Single Nucleotide, polymorphism, Humans, FCGR2C, Alleles, Randomized Controlled Trials as Topic, Receptors, IgG, Infant, Newborn, RC581-607, Infectious Disease Transmission, Vertical, Case-Control Studies, HIV-1, Female, perinatal HIV-1 acquisition, Immunologic diseases. Allergy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold