Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A systems biology analysis of the Drosophila phagosome

Authors: Elizabeth J. Hennessy; Jonathan Boulais; Simon Letarte; Guillaume Goyette; Lynda M. Stuart; Lynda M. Stuart; Guillaume M. Charrière; +11 Authors

A systems biology analysis of the Drosophila phagosome

Abstract

Phagocytes have a critical function in remodelling tissues during embryogenesis and thereafter are central effectors of immune defence. During phagocytosis, particles are internalized into 'phagosomes', organelles from which immune processes such as microbial destruction and antigen presentation are initiated. Certain pathogens have evolved mechanisms to evade the immune system and persist undetected within phagocytes, and it is therefore evident that a detailed knowledge of this process is essential to an understanding of many aspects of innate and adaptive immunity. However, despite the crucial role of phagosomes in immunity, their components and organization are not fully defined. Here we present a systems biology analysis of phagosomes isolated from cells derived from the genetically tractable model organism Drosophila melanogaster and address the complex dynamic interactions between proteins within this organelle and their involvement in particle engulfment. Proteomic analysis identified 617 proteins potentially associated with Drosophila phagosomes; these were organized by protein-protein interactions to generate the 'phagosome interactome', a detailed protein-protein interaction network of this subcellular compartment. These networks predicted both the architecture of the phagosome and putative biomodules. The contribution of each protein and complex to bacterial internalization was tested by RNA-mediated interference and identified known components of the phagocytic machinery. In addition, the prediction and validation of regulators of phagocytosis such as the 'exocyst', a macromolecular complex required for exocytosis but not previously implicated in phagocytosis, validates this strategy. In generating this 'systems-based model', we show the power of applying this approach to the study of complex cellular processes and organelles and expect that this detailed model of the phagosome will provide a new framework for studying host-pathogen interactions and innate immunity.

Keywords

Proteomics, Staphylococcus aureus, Systems Biology, Genomics, Immunity, Innate, Drosophila melanogaster, Phagocytosis, Phagosomes, Escherichia coli, Animals, Drosophila Proteins, Caenorhabditis elegans, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    209
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
209
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?