Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Genetics
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Genetics
Article . 2008
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Genetics
Article . 2008
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Establishment of a new method for precisely determining the functions of individual mitochondrial genes, using Dictyostelium cells

Authors: Tanaka Masashi; Amagai Aiko; Chida Junji; Maeda Yasuo;

Establishment of a new method for precisely determining the functions of individual mitochondrial genes, using Dictyostelium cells

Abstract

Abstract Background Disruption of mitochondrial genes may become a powerful tool for elucidating precisely the functions of individual mitochondrial genes. However, it is generally difficult to manipulate genetically mitochondrial genes, because 1) a mitochondrion is surrounded by inner and outer membranes, and 2) there are a large number of mtDNA copies in a single cell. This is the reason why we tried to establish a novel method for disrupting a certain mitochondrial gene (rps4), using Dictyostelium cells. Results Here, we have developed a new method for specifically disrupting a mitochondrial gene (rps4 ; ribosomal protein subunit S4), by a combination of homologous recombination and delivery of an appropriate restriction endonuclease (Sfo I) into mitochondria. First, mitochondrially targeted Sfo I whose expression is under control of the tetracycline (Tet)-regulated gene expression system was introduced into cells heteroplasmic with respect to the rps4 gene. Then, the heteroplasmic cells were produced by homologous recombination by use of the construct in which the unique Sfo I site and the 5'-half of the rps4 coding region were deleted not to be digested by Sfo I, and therefore their mitochondria have both the wild-type mtDNA and the mutant mtDNA with the disrupted rps4 gene. In response to removal of Tet from growth medium, Sfo I was selectively delivered into mitochondria and digested only the wild-type mtDNA but not the mutated rps4. Thus one can gain rps4-null cells with only the mutated mtDNA, under the Tet-minus condition. Conclusion The mitochondrial gene-disruption method presented here must be widely useful for precisely determining the functions of individual mitochondrial genes. This is the first report to demonstrate complete and specific mitochondrial gene disruption.

Keywords

Ribosomal Proteins, Methodology Article, Genes, Protozoan, QH426-470, Blotting, Northern, DNA, Mitochondrial, Blotting, Southern, Genes, Mitochondrial, Phenotype, Gene Targeting, Genetics, Animals, Genetics(clinical), Dictyostelium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Green
gold