Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Internationale Revue...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Internationale Revue der gesamten Hydrobiologie und Hydrographie
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caffeine reduces the toxicity of albendazole and carbamazepine to the microalgae Raphidocelis subcapitata (Sphaeropleales, Chlorophyta)

Authors: Vinicius Diniz; Gabriela M. Reyes; Susanne Rath; Davi G. F. Cunha;

Caffeine reduces the toxicity of albendazole and carbamazepine to the microalgae Raphidocelis subcapitata (Sphaeropleales, Chlorophyta)

Abstract

AbstractPharmaceutically active compounds (PhACs) are emerging contaminants that have been widely detected in water bodies in the last decades, with ecological effects toward aquatic biota that have not been fully elucidated. Most studies concerning their toxicity to microalgae have only considered short‐term individual PhAC exposure, rather than combined exposure to several compounds for longer time periods. In this study, we investigated the effects of albendazole (ABZ) (anthelmintic) and carbamazepine (antiepileptic), alone and in combination with caffeine, on the growth and production of chlorophyll‐a of the microalgae Raphidocelis subcapitata, during 16 days of exposure. ABZ alone had a more significant effect than carbamazepine alone on the growth rate and maximum cell density of the microalgae (p < .05; analysis of variance). These results were probably related to the effect of ABZ in inhibiting enzyme complexes and cell membrane proteins related to adenosine triphosphate synthesis, which is important for cell growth. The presence of caffeine lowered the toxicities of ABZ and carbamazepine to the microalgae, probably due to its antioxidant properties, positively affecting chlorophyll‐a production, growth rate, and maximum cell density. Thus, caffeine had an antagonistic interaction with the studied PhACs. The results reinforce the importance of ecotoxicological assays that compare individual and combined PhAC exposure conditions. Our findings highlighted that caffeine can be a relevant factor influencing such assays, considering its widespread occurrence in impacted water bodies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!