Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Chromatog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Chromatography B
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network pharmacology combined with metabolomics reveals the mechanism of Fuzi decoction against chronic heart failure in rats

Authors: Taixiang, Gao; Rui, Wang; Hongxiong, Zhang; Feng, Zhao;

Network pharmacology combined with metabolomics reveals the mechanism of Fuzi decoction against chronic heart failure in rats

Abstract

Chronic heart failure (CHF) is the end stage of many severe heart diseases. Fuzi decoction (FZD) originates from Zhang Zhongjing's Treatise on Febrile Diseases and is widely used in the treatment of CHF in the clinic, but the potential mechanism of FZD in CHF is unclear. In this study, an integrated approach combining network pharmacology and metabolomics was adopted to explore the mechanism of FZD in CHF. Network pharmacological studies indicated that the most significant signaling pathway was the HIF-1 signaling pathway. Untargeted metabolomics indicated abnormalities in serum metabolism in CHF rats, and FZD treatment significantly improved the metabolic abnormalities and altered the levels of 30 metabolites. A pathway enrichment analysis showed that FZD was mainly involved in glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, β-alanine metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism and other metabolic pathways. A correlation analysis showed that pyruvate and lactate were strongly correlated with the heart failure index, and a targeted metabolomics study showed that FZD restored the balance of the pyruvate-lactate axis that was disrupted due to CHF. Therefore, the mechanism of FZD against CHF may be related to regulate HIF-1 signaling pathway, pyruvate-lactate axis and glycine, serine and threonine metabolism.

Related Organizations
Keywords

Heart Failure, Threonine, Glycine, Glyoxylates, Network Pharmacology, Rats, RNA, Transfer, Chronic Disease, Lactates, Serine, beta-Alanine, Animals, Metabolomics, Coenzyme A, Diterpenes, Pyruvates, Drugs, Chinese Herbal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!