Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Biom...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Biomedical and Health Informatics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic Depth-Aware Network for Endoscopy Super-Resolution

Authors: Wenting Chen; Yifan Liu; Jiancong Hu; Yixuan Yuan;

Dynamic Depth-Aware Network for Endoscopy Super-Resolution

Abstract

Endoscopy super-resolution (SR) plays an important role in improving diagnostic results and reducing the misdiagnosis rate. Even though recent studies have investigated the SR for endoscopy, these methods apply equal importance to the whole image and do not consider the relationship among pixels, especially the depth information, which can provide diagnosis-related information for clinicians. To address this problem, we propose a dynamic depth-aware network for endoscopy super-resolution, which represents the first effort to comprehensively integrate the depth information to the SR task for endoscopic images. It includes a depth-wise feature extracting branch (DW-B) and a depth-guided SR branch (DGSR-B). The DW-B aims to extract the representative feature for each depth level (i.e. depth matrix) further to provide auxiliary information and guide the super-resolution of texture under different depth levels. In DGSR-B, a depth-guided block (DGB) consisting of depth-focus normalization (DFN) is introduced to inject both the depth matrix and depth map into the LR image feature, so as to guide the image generation for each depth region. To adaptively super-resolve the regions under different depth levels, we devise a dynamic depth-aware loss to assign different trainable weights to each region for SR optimization. Extensive experiments have been conducted on two main publicly available datasets, i.e., the Kvasir dataset and the EndoScene dataset, and the superior performance verifies the effectiveness of our method for SR task and polyp segmentation. Source code is to be released.

Related Organizations
Keywords

Humans, Endoscopy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!