Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Immunityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunity
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Immunity
Article . 2004
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase γ during T and B Lymphocyte Homing

Authors: Nombela-Arrieta, César; Lacalle, Rosa Ana; Montoya, Marı́a C.; Kunisaki, Yuya; Megı́as, Diego; Marqués, Miriam; Carrera, Ana C.; +4 Authors

Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase γ during T and B Lymphocyte Homing

Abstract

Chemokines guide lymphocytes from blood to secondary lymphoid organs by triggering integrin-dependent firm adhesion under vascular flow and directed migration of T and B lymphocytes within lymphoid tissue. Here, we analyze the roles of DOCK2, a mammalian homolog of Caenorhabditis elegans CED-5 and Drosophila melanogaster Myoblast City, and phosphoinositide-3-kinase (PI3K) during lymphocyte recirculation. DOCK2 mediated efficient lymphocyte migration in a largely PI3K-independent manner, although a minor, PI3K-dependent pathway for migration was observed in wild-type and DOCK2-deficient lymphocytes. In T cells, this residual migration depended mainly on PI3Kgamma, whereas other PI3K isoforms were implicated in B cells. In vitro adhesion assays and intravital microscopy of lymphoid organ vasculature uncovered an unexpected defect in integrin activation in DOCK2-/- B cells, whereas lack of DOCK2 did not affect chemokine-triggered integrin activation in T cells. DOCK2 and PI3Kgamma thus play distinct roles during T and B cell integrin activation and migration.

Keywords

B-Lymphocytes, Integrins, Lymphoid Tissue, T-Lymphocytes, Immunology, GTPase-Activating Proteins, Immunoblotting, Fluorescent Antibody Technique, Lymphocyte Activation, Immunohistochemistry, Actins, Mice, Phosphatidylinositol 3-Kinases, Infectious Diseases, Cell Movement, Cell Adhesion, Immunology and Allergy, Animals, Guanine Nucleotide Exchange Factors, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    210
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
210
Top 10%
Top 10%
Top 1%
hybrid