Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Photobiomodulation P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photobiomodulation Photomedicine and Laser Surgery
Article . 2019 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revisiting the Photon/Cell Interaction Mechanism in Low-Level Light Therapy

Authors: Andrei P, Sommer;

Revisiting the Photon/Cell Interaction Mechanism in Low-Level Light Therapy

Abstract

Objective: Several reports claim that the enzyme cytochrome c oxidase (CCO) is the primary absorber for red-to-near-infrared (R-NIR) light in cells and causal for mitochondrial adenosine triphosphate (ATP) upregulation, and that pulsed R-NIR light has frequent therapeutic effects, which are superior to those of the continuous wave (CW) mode used in low-level light therapy (LLLT). Background data: Convincing evidence that the absorption of R-NIR photons by CCO is involved in mitochondrial ATP upregulations as well as a coherent explanation for the superiority of the pulsed irradiation mode is presently lacking in the literature. Methods: A comprehensive literature search and rigorous analysis of the data published on the idea that CCO is the primary absorber for R-NIR light, and of the claim that the effectivity of the pulsed irradiation mode can be derived from the absorption of R-NIR photons by CCO, reveal a number of severe inconsistencies. Results: A systematical analysis covering both the theory that CCO is the primary acceptor for R-NIR light and of its use to interpret differences between the biological effect of pulsed light and CW casts doubt on the general validity of the CCO-based hypothesis. Instead, we are offered a simple and conflict-free model accounting for both ATP upregulation and superiority of the pulsed mode in LLLT, which is in agreement with the results of recent laboratory experiments. Conclusions: CCO is not the primary acceptor for R-NIR light.

Keywords

Electron Transport Complex IV, Photons, Adenosine Triphosphate, Cell Communication, Low-Level Light Therapy, Mitochondria, Up-Regulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!