Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation
Article . 2006 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2006
Circulation
Article . 2006
Data sources: Pure Amsterdam UMC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure

Authors: Heerebeek, Loek, van; Borbély, Attila; Niessen, Hans W. M.; Bronzwaer, Jean G. F.; Velden, Jolanda, van der; Stienen, Ger J. M.; Linke, Wolfgang A.; +2 Authors

Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure

Abstract

Background— To support the clinical distinction between systolic heart failure (SHF) and diastolic heart failure (DHF), left ventricular (LV) myocardial structure and function were compared in LV endomyocardial biopsy samples of patients with systolic and diastolic heart failure. Methods and Results— Patients hospitalized for worsening heart failure were classified as having SHF (n=22; LV ejection fraction (EF) 34±2%) or DHF (n=22; LVEF 62±2%). No patient had coronary artery disease or biopsy evidence of infiltrative or inflammatory myocardial disease. More DHF patients had a history of arterial hypertension and were obese. Biopsy samples were analyzed with histomorphometry and electron microscopy. Single cardiomyocytes were isolated from the samples, stretched to a sarcomere length of 2.2 μm to measure passive force (F passive ), and activated with calcium-containing solutions to measure total force. Cardiomyocyte diameter was higher in DHF (20.3±0.6 versus 15.1±0.4 μm, P <0.001), but collagen volume fraction was equally elevated. Myofibrillar density was lower in SHF (36±2% versus 46±2%, P <0.001). Cardiomyocytes of DHF patients had higher F passive (7.1±0.6 versus 5.3±0.3 kN/m 2 ; P <0.01), but their total force was comparable. After administration of protein kinase A to the cardiomyocytes, the drop in F passive was larger ( P <0.01) in DHF than in SHF. Conclusions— LV myocardial structure and function differ in SHF and DHF because of distinct cardiomyocyte abnormalities. These findings support the clinical separation of heart failure patients into SHF and DHF phenotypes.

Keywords

Heart Failure, Male, Myocytes, Systole, Biopsy, Heart Ventricles, Cardiomegaly, Orvostudományok, Middle Aged, Diastole, Journal Article, Humans, Female, Myocytes, Cardiac, Elméleti orvostudományok, Cardiac, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    571
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
571
Top 1%
Top 1%
Top 0.1%
bronze