
A class of fault-tolerance techniques using time redundancy can be a viable alternative for high-performance pipelined processors. Time-redundant fault-tolerance techniques, such as recomputing with shifted operands (RESO), have not been very popular, partly because of the perceived time overhead of such techniques. While the per-instruction time overhead can be quite high, especially if the degree of pipelining is low, the overhead can be very small (and possibly negligible) when the execution of an entire program is considered and the degree of pipelining is high. Simulation studies were carried out on the Cray-1 scalar unit using the well-known Livermore loops as benchmarks to determine the performance loss due to time-redundant fault-tolerance techniques. The results show that the overhead for such techniques is less than 10% in almost all cases and is negligibly small in most cases. This suggests that time-redundant techniques can be useful for fault tolerance in high-performance scalar processors with multiple pipelined functional units. >
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
