Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A study of time-redundant fault tolerance techniques for high-performance pipelined computers

Authors: Gurindar S. Sohi; Manoj Franklin; Kewal K. Saluja;

A study of time-redundant fault tolerance techniques for high-performance pipelined computers

Abstract

A class of fault-tolerance techniques using time redundancy can be a viable alternative for high-performance pipelined processors. Time-redundant fault-tolerance techniques, such as recomputing with shifted operands (RESO), have not been very popular, partly because of the perceived time overhead of such techniques. While the per-instruction time overhead can be quite high, especially if the degree of pipelining is low, the overhead can be very small (and possibly negligible) when the execution of an entire program is considered and the degree of pipelining is high. Simulation studies were carried out on the Cray-1 scalar unit using the well-known Livermore loops as benchmarks to determine the performance loss due to time-redundant fault-tolerance techniques. The results show that the overhead for such techniques is less than 10% in almost all cases and is negligibly small in most cases. This suggests that time-redundant techniques can be useful for fault tolerance in high-performance scalar processors with multiple pipelined functional units. >

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Average
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!