Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinematic structures of the solar neighbourhood revealed byGaiaDR1/TGAS and RAVE

Authors: Thomas Bensby; Iryna Kushniruk; Thiebaut Schirmer; Thiebaut Schirmer;

Kinematic structures of the solar neighbourhood revealed byGaiaDR1/TGAS and RAVE

Abstract

The velocity distribution of stars in the Solar neighbourhood is inhomogeneous and rich with stellar streams and kinematic structures. These may retain important clues of the formation and dynamical history of the Milky Way. However, the nature and origin of many of the streams and structures is unclear, hindering our understanding of how the Milky Way formed and evolved. We aim to study the velocity distribution of stars of the Solar neighbourhood and investigate the properties of individual kinematic structures in order to improve our understanding of their origins. Using the astrometric data provided by Gaia DR1/TGAS and radial velocities from RAVE DR5 we perform a wavelet analysis with the `a trous algorithm to 55831 stars that have U and V velocity uncertainties less than 4 km/s. An auto-convolution histogram method is used to filter the output data, and we then run Monte Carlo simulations to verify that the detected structures are real due to velocity uncertainties. Additionally we analysed our stellar sample by splitting all stars into a nearby sample (<300 pc) and a distant sample (>300 pc), and two chemically defined samples that to a first degree represent the thin and the thick disks. With the much enlarged stellar sample and much increased precision in distances, proper motions, provided by Gaia DR1 TGAS we have shown that the velocity distribution of stars in the Solar neighbourhood contains more structures than previously known. A new feature is discovered and three recently detected groups are confirmed at high confidence level. Dividing the sample based on distance and/or metallicity shows that there are variety of structures which are as large-scale and small-scale groups, some of them have clear trends on metallicities, others are a mixture of both disk stars and based on that we discuss possible origin of each group.

Accepted for publication in Astronomy & Astrophysics

Keywords

Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
Green
bronze