Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clairvoyant Dynamic Bin Packing for Job Scheduling with Minimum Server Usage Time

Authors: Runtian Ren; Xueyan Tang;

Clairvoyant Dynamic Bin Packing for Job Scheduling with Minimum Server Usage Time

Abstract

The MinUsageTime Dynamic Bin Packing (DBP) problem targets at minimizing the accumulated usage time of all the bins in the packing process. It models the server acquisition and job scheduling issues in many cloud-based systems. Earlier work has studied MinUsageTime DBP in the non-clairvoyant setting where the departure time of each item is not known at the time of its arrival. In this paper, we investigate MinUsageTime DBP in the clairvoyant setting where the departure time of each item is known for packing purposes. We study both the offline and online versions of Clairvoyant MinUsageTime DBP. We present two approximation algorithms for the offline problem, including a 5-approximation Duration Descending First Fit algorithm and a 4-approximation Dual Coloring algorithm. For the online problem, we establish a lower bound of 1+√5/2 on the competitive ratio of any online packing algorithm. We propose two strategies of item classification for online packing, including a classify-by-departure-time strategy and a classify-by-duration strategy. We analyze the competitiveness of these strategies when they are applied to the classical First Fit packing algorithm. It is shown that both strategies can substantially reduce the competitive ratio for Clairvoyant MinUsageTime DBP compared to the original First Fit algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!