Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Spear or Shield: Leveraging Generative AI to Tackle Security Threats of Intelligent Network Services

Authors: Hongyang Du; Dusit Niyato; Jiawen Kang 0001; Zehui Xiong; Kwok-Yan Lam; Yuguang Fang; Yonghui Li 0001;

Spear or Shield: Leveraging Generative AI to Tackle Security Threats of Intelligent Network Services

Abstract

Generative AI (GAI) models have been rapidly advancing, with a wide range of applications including intelligent networks and mobile AI-generated content (AIGC) services. Despite their numerous applications and potential, such models create opportunities for novel security challenges. In this paper, we examine the challenges and opportunities of GAI in the realm of the security of intelligent network AIGC services such as suggesting security policies, acting as both a ``spear'' for potential attacks and a ``shield'' as an integral part of various defense mechanisms. First, we present a comprehensive overview of the GAI landscape, highlighting its applications and the techniques underpinning these advancements, especially large language and diffusion models. Then, we investigate the dynamic interplay between GAI's spear and shield roles, highlighting two primary categories of potential GAI-related attacks and their respective defense strategies within wireless networks. A case study illustrates the impact of GAI defense strategies on energy consumption in an image request scenario under data poisoning attack. Our results show that by employing an AI-optimized diffusion defense mechanism, energy can be reduced by 8.7%, and retransmission count can be decreased from 32 images, without defense, to just 6 images, showcasing the effectiveness of GAI in enhancing network security.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green