Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cloning of α2 chain of type VI collagen and expression during mouse development

Authors: Ez-Zoubir Amri; Azeddine Ibrahimi; P. Grimaldi; Sylvie Bardon; B. Bertrand; Christian Dani; Gérard Ailhaud;

Cloning of α2 chain of type VI collagen and expression during mouse development

Abstract

We have previously described the molecular cloning of a cDNA probe which detects a 6 kb mRNA termed pOb24. pOb24 mRNA appeared to be a marker of the preadipose state both in vitro and in vivo. A pOb24 genomic fragment was isolated and used to screen cDNA libraries in order to isolate the full-length pOb24 cDNA and to identify the corresponding protein. The screening yielded a new cDNA clone which detected a 3.7 kb mRNA species in addition to the 6 kb mRNA species. Sequences at the 3′ end of the 6 kb and 3.7 kb mRNAs indicate that both mRNAs are generated from the same gene through the use of two different polyadenylation sites. The protein encoded by the 3.7 kb mRNA appeared to be homologous to the human alpha 2 chain of type VI collagen (A2COL6). The expression of the A2COL6 gene was not confined to adipose tissue; mRNA species can be detected in ovaries, adrenal glands and lungs but not in liver and skeletal muscle. The expression appeared specific for initial phase(s) of cell differentiation since it is parallel to that of the MyoD1 gene during muscle embryogenesis in vivo. In the myogenic C2C12 cell line, the A2COL6 gene exhibited the same regulation as MyoD1 and myogenin genes. These results indicate that A2COL6 gene expression is a marker of the preadipose state, but may also be a marker of other differentiation programmes such as that of muscle.

Keywords

Male, Mice, Inbred BALB C, Base Sequence, Muscles, Cell Cycle, Molecular Sequence Data, Gene Expression, Muscle Proteins, Cell Differentiation, DNA, Embryonic and Fetal Development, Mice, Animals, Female, Myogenin, Amino Acid Sequence, Collagen, RNA, Messenger, Cloning, Molecular, MyoD Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Top 10%
bronze