
This letter presents a novel dynamic Neuro-space mapping (Neuro-SM) technique for nonlinear device modeling. This is an advance over the existing static Neuro-SM which aims to map a given approximate device model towards an accurate model. The proposed technique retains the ability of static Neuro-SM in modifying the effects of nonlinear resistors and current sources. The proposed technique can also make up for any capacitive effects and non-quasi-static effects that maybe missing in the given model, which is not achievable by the existing static Neuro-SM. In this way, the dynamic Neuro-SM model can exceed the accuracy limit of the static Neuro-SM. The validity and efficiency of the proposed approach are verified through two high-electron mobility transistor (HEMT) modeling examples.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
