Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancers
Other literature type . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancers
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancers
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of FAPI-PET/CT on Target Volume Definition in Radiation Therapy of Locally Recurrent Pancreatic Cancer

Authors: Liermann, Jakob; Syed, Mustafa; Ben-Josef, Edgar; Schubert, Kai; Schlampp, Ingmar; Sprengel, Simon David; Ristau, Jonas; +8 Authors

Impact of FAPI-PET/CT on Target Volume Definition in Radiation Therapy of Locally Recurrent Pancreatic Cancer

Abstract

(1) Background: A new radioactive positron emission tomography (PET) tracer uses inhibitors of fibroblast activation protein (FAPI) to visualize FAP-expressing cancer associated fibroblasts. Significant FAPI-uptake has recently been demonstrated in pancreatic cancer patients. Target volume delineation for radiation therapy still relies on often less precise conventional computed tomography (CT) imaging, especially in locally recurrent pancreatic cancer patients. The need for improvement in precise tumor detection and delineation led us to innovatively use the novel FAPI-PET/CT for radiation treatment planning. (2) Methods: Gross tumor volumes (GTVs) of seven locally recurrent pancreatic cancer cases were contoured by six radiation oncologists. In addition, FAPI-PET/CT was used to automatically delineate tumors. The interobserver variability in target definition was analyzed and FAPI-based automatic GTVs were compared to the manually defined GTVs. (3) Results: Target definition differed significantly between different radiation oncologists with mean dice similarity coefficients (DSCs) between 0.55 and 0.65. There was no significant difference between the volumes of automatic FAPI-GTVs based on the threshold of 2.0 and most of the manually contoured GTVs by radiation oncologists. (4) Conclusion: Due to its high tumor to background contrast, FAPI-PET/CT seems to be a superior imaging modality compared to the current gold standard contrast-enhanced CT in pancreatic cancer. For the first time, we demonstrate how FAPI-PET/CT could facilitate target definition and increases consistency in radiation oncology in pancreatic cancer.

Keywords

interobserver variability, pancreatic cancer, target definition, cancer-associated fibroblasts, Article, FAPI

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 1%
Green
gold
Related to Research communities
Cancer Research