Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of pH, Salt, and Macromolecular Crowding on the Stability of FK506-binding Protein: An Integrated Experimental and Theoretical Study

Authors: Timothy M. Logan; Huan-Xiang Zhou; Daniel S. Spencer; Ke Xu;

Effects of pH, Salt, and Macromolecular Crowding on the Stability of FK506-binding Protein: An Integrated Experimental and Theoretical Study

Abstract

Environmental variables can exert significant influences on the folding stability of a protein, and elucidating these influences provides insight on the determinants of protein stability. Here, experimental data on the stability of FKBP12 are reported for the effects of three environmental variables: pH, salt, and macromolecular crowding. In the pH range of 5-9, contribution to the pH dependence of the unfolding free energy from residual charge-charge interactions in the unfolded state was found to be negligible. The negligible contribution was attributed to the lack of sequentially nearest neighboring charged residues around groups that titrate in the pH range. KCl lowered the stability of FKBP12 and the E31Q/D32N double mutant at small salt concentrations but raised stability after approximately 0.5 M salt. Such a turnover behavior was accounted for by the balance of two opposing types of protein-salt interactions: the Debye-Hückel type, modeling the response of the ions to protein charges, favors the unfolded state while the Kirkwood type, accounting for the disadvantage of the ions moving toward the low-dielectric protein cavity from the bulk solvent, disfavors the unfolded state. Ficoll 70 as a crowding agent was found to have a modest effect on protein stability, in qualitative agreement with a simple model suggesting that the folded and unfolded states are nearly equally adversely affected by macromolecular crowding. For any environmental variable, it is the balance of its effects on the folded and unfolded states that determines the outcome on the folding stability.

Related Organizations
Keywords

Protein Denaturation, Protein Folding, Polymers, Osmolar Concentration, Static Electricity, Hydrogen-Ion Concentration, Potassium Chloride, Tacrolimus Binding Proteins, Ficoll, Humans, Salts

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!