Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2004
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ferritin Heavy Chain Upregulation by NF-κB Inhibits TNFα-Induced Apoptosis by Suppressing Reactive Oxygen Species

Authors: PHAM CG; BUBICI C; ZAZZERONI, FRANCESCA; PAPA S; JONES J; ALVAREZ K; JAYAWARDENA S; +6 Authors

Ferritin Heavy Chain Upregulation by NF-κB Inhibits TNFα-Induced Apoptosis by Suppressing Reactive Oxygen Species

Abstract

During inflammation, NF-kappaB transcription factors antagonize apoptosis induced by tumor necrosis factor (TNF)alpha. This antiapoptotic activity of NF-kappaB involves suppressing the accumulation of reactive oxygen species (ROS) and controlling the activation of the c-Jun N-terminal kinase (JNK) cascade. However, the mechanism(s) by which NF-kappaB inhibits ROS accumulation is unclear. We identify ferritin heavy chain (FHC)--the primary iron storage factor--as an essential mediator of the antioxidant and protective activities of NF-kappaB. FHC is induced downstream of NF-kappaB and is required to prevent sustained JNK activation and, thereby, apoptosis triggered by TNFalpha. FHC-mediated inhibition of JNK signaling depends on suppressing ROS accumulation and is achieved through iron sequestration. These findings establish a basis for the NF-kappaB-mediated control of ROS induction and identify a mechanism by which NF-kappaB suppresses proapoptotic JNK signaling. Our results suggest modulation of FHC or, more broadly, of iron metabolism as a potential approach for anti-inflammatory therapy.

Keywords

Inflammation, Mitogen-Activated Protein Kinase Kinases, Biochemistry, Genetics and Molecular Biology(all), MAP Kinase Kinase 4, Tumor Necrosis Factor-alpha, JNK Mitogen-Activated Protein Kinases, Apoptosis, Protein Serine-Threonine Kinases, Up-Regulation, Gene Expression Regulation, Ferritins, NF-kappaB-Inducing Kinase, Humans, NF-kappaB; inflammation; apoptosis, Reactive Oxygen Species, FHC; JNK; ROS; NF-kB, HeLa Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    618
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
618
Top 0.1%
Top 1%
Top 0.1%
hybrid