Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Software ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Software Evolution and Process
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2019
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Branch coverage prediction in automated testing

Authors: Giovanni Grano; Timofey V. Titov; Sebastiano Panichella; Harald C. Gall;

Branch coverage prediction in automated testing

Abstract

AbstractSoftware testing is crucial in continuous integration (CI). Ideally, at every commit, all the test cases should be executed, and moreover, new test cases should be generated for the new source code. This is especially true in a Continuous Test Generation (CTG) environment, where the automatic generation of test cases is integrated into the continuous integration pipeline. In this context, developers want to achieve a certain minimum level of coverage for every software build. However, executing all the test cases and, moreover, generating new ones for all the classes at every commit is not feasible. As a consequence, developers have to select which subset of classes has to be tested and/or targeted by test‐case generation. We argue that knowing a priori the branch coverage that can be achieved with test‐data generation tools can help developers into taking informed decision about those issues. In this paper, we investigate the possibility to use source‐code metrics to predict the coverage achieved by test‐data generation tools. We use four different categories of source‐code features and assess the prediction on a large data set involving more than 3'000 Java classes. We compare different machine learning algorithms and conduct a fine‐grained feature analysis aimed at investigating the factors that most impact the prediction accuracy. Moreover, we extend our investigation to four different search budgets. Our evaluation shows that the best model achieves an average 0.15 and 0.21 MAE on nested cross‐validation over the different budgets, respectively, onEVOSUITEandRANDOOP. Finally, the discussion of the results demonstrate the relevance of coupling‐related features for the prediction accuracy.

Country
Switzerland
Related Organizations
Keywords

1712 Software, 10009 Department of Informatics, 005: Computerprogrammierung, Programme und Daten, 000 Computer science, knowledge & systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
bronze