Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Power of Nested Parallelism in Big Data Processing – Hitting Three Flies with One Slap –

Authors: Gábor E. Gévay; Jorge-Arnulfo Quiané-Ruiz; Volker Markl;

The Power of Nested Parallelism in Big Data Processing – Hitting Three Flies with One Slap –

Abstract

Many common data analysis tasks, such as performing hyperparameter optimization, processing a partitioned graph, and treating a matrix as a vector of vectors, offer natural opportunities for nested-parallel operations, i.e., launching parallel operations from inside other parallel operations. However, state-of-the-art dataflow engines, such as Spark and Flink, do not support nested parallelism. Users must implement workarounds, causing orders of magnitude slowdowns for their tasks, let alone the implementation effort. We present Matryoshka, a system that enables dataflow engines to support nested parallelism, even in the presence of control flow statements at inner nesting levels. Matryoshka achieves this via a novel two-phase flattening process, which translates nested-parallel programs to flat-parallel programs that can efficiently run on existing dataflow engines. The first phase introduces novel nesting primitives into the code, which allows for dynamic optimizations based on intermediate data characteristics in the second phase at runtime. We validate our system using several common data analysis tasks, such as PageRank and K-means.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!