Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1995 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Seven Helix cAMP Receptors Stimulate Ca2+ Entry in the Absence of Functional G Proteins in Dictyostelium

Authors: J L, Milne; L, Wu; M J, Caterina; P N, Devreotes;

Seven Helix cAMP Receptors Stimulate Ca2+ Entry in the Absence of Functional G Proteins in Dictyostelium

Abstract

Surface cAMP receptors (cARs) in Dictyostelium transmit a variety of signals across the plasma membrane. The best characterized cAR, cAR1, couples to the heterotrimeric guanine nucleotide-binding protein (G protein) alpha-subunit G alpha 2 to mediate activation of adenylyl and guanylyl cyclases and cell aggregation. cAR1 also elicits other cAMP-dependent responses including receptor phosphorylation, loss of ligand binding (LLB), and Ca2+ influx through a G alpha 2-independent pathway that may not involve G proteins. Here, we have expressed cAR1 and a related receptor, cAR3, in a g beta- strain (Lilly, P., Wu. L., Welker, D. L., and Devreotes, P. N. (1993) Genes & Dev. 7,986-995), which lacks G protein activity. Both cell lines failed to aggregate, a process requiring the G alpha 2 and G beta- subunits. In contrast, cAR1 phosphorylation in cAR1/g beta- cells showed a time course and cAMP dose dependence indistinguishable from those of cAR1/G beta+ controls. cAMP-induced LLB was also normal in the cAR1/g beta- cells. Finally, cAR1/g beta- cells and cAR3/g beta- cells showed a Ca2+ response with kinetics, agonist dependence, ion specificity, and sensitivity to depolarization agents that were like those of G beta+ controls, although they accumulated fewer Ca2+ ions per cAMP receptor than the control strains. Together, these results suggest that the G beta-subunit is not required for the activation or attenuation of cAR1 phosphorylation, LLB, or Ca2+ influx. It may, however, serve to amplify the Ca2+ response, possibly by modulating other intracellular Ca2+ signal transduction pathways.

Related Organizations
Keywords

Carbonyl Cyanide m-Chlorophenyl Hydrazone, Gene Expression, Biological Transport, Ruthenium Red, Receptors, Cyclic AMP, Kinetics, GTP-Binding Proteins, Cations, Cyclic AMP, Animals, Calcium, Dictyostelium, Phosphorylation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Average
Top 10%
Top 10%
gold