Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2011 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2011
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transcription coactivator mediator subunit MED1 Is required for the development of fatty liver in the mouse

Authors: Liang, Bai; Yuzhi, Jia; Navin, Viswakarma; Jiansheng, Huang; Aurore, Vluggens; Nathan E, Wolins; Nadereh, Jafari; +4 Authors

Transcription coactivator mediator subunit MED1 Is required for the development of fatty liver in the mouse

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor, when overexpressed in liver stimulates the induction of adipocyte-specific and lipogenesis-related genes and causes hepatic steatosis. We report here that Mediator 1 (MED1; also known as PBP or TRAP220), a key subunit of the Mediator complex, is required for high-fat diet-induced hepatic steatosis as well as PPARγ-stimulated adipogenic hepatic steatosis. Mediator forms the bridge between transcriptional activators and RNA polymerase II. MED1 interacts with nuclear receptors such as PPARγ and other transcriptional activators. Liver-specific MED1 knockout (MED1δLiv) mice, when fed a high-fat (60% kcal fat) diet for up to 4 months failed to develop fatty liver. Similarly, MED1δLiv mice injected with adenovirus-PPARγ (Ad/PPARγ) by tail vein also did not develop fatty liver, whereas mice with MED1 (MED1fl/fl) fed a high-fat diet or injected with Ad/PPARγ developed severe hepatic steatosis. Gene expression profiling and northern blot analyses of Ad/PPARγ-injected mouse livers showed impaired induction in MED1δLiv mouse liver of adipogenic markers, such as aP2, adipsin, adiponectin, and lipid droplet-associated genes, including caveolin-1, CideA, S3-12, and others. These adipocyte-specific and lipogenesis-related genes are strongly induced in MED1fl/fl mouse liver in response to Ad/PPARγ. Re-expression of MED1 using adenovirally-driven MED1 (Ad/MED1) in MED1δLiv mouse liver restored PPARγ-stimulated hepatic adipogenic response. These studies also demonstrate that disruption of genes encoding other coactivators such as SRC-1, PRIC285, PRIP, and PIMT had no effect on hepatic adipogenesis induced by PPARγ overexpression. Conclusion: We conclude that transcription coactivator MED1 is required for high-fat diet-induced and PPARγ-stimulated fatty liver development, which suggests that MED1 may be considered a potential therapeutic target for hepatic steatosis. (HEPATOLOGY 2011;)

Related Organizations
Keywords

Fatty Liver, PPAR gamma, Mediator Complex Subunit 1, Mice, Gene Expression Profiling, Genes, Regulator, Animals, Dietary Fats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
bronze