Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tryprostatin A, a specific and novel inhibitor of microtubule assembly

Authors: Tadanori Mayumi; Masuo Kondoh; Cheng-Bin Cui; Takeo Usui; Hiroyuki Osada;

Tryprostatin A, a specific and novel inhibitor of microtubule assembly

Abstract

We have investigated the cell cycle inhibition mechanism and primary target of tryprostatin A (TPS-A) purified from Aspergillus fumigatus. TPS-A inhibited cell cycle progression of asynchronously cultured 3Y1 cells in the M phase in a dose- and time-dependent manner. In contrast, TPS-B (the demethoxy analogue of TPS-A) showed cell-cycle non-specific inhibition on cell growth even though it inhibited cell growth at lower concentrations than TPS-A. TPS-A treatment induced the reversible disruption of the cytoplasmic microtubules of 3Y1 cells as observed by indirect immunofluorescence microscopy in the range of concentrations that specifically inhibited M-phase progression. TPS-A inhibited the assembly in vitro of microtubules purified from bovine brains (40% inhibition at 250 µM); however, there was little or no effect on the self-assembly of purified tubulin when polymerization was induced by glutamate even at 250 µM TPS-A. TPS-A did not inhibit assembly promoted by taxol or by digestion of the C-terminal domain of tubulin. However, TPS-A blocked the tubulin assembly induced by inducers interacting with the C-terminal domain, microtubule-associated protein 2 (MAP2), tau and poly-(l-lysine). These results indicate that TPS-A is a novel inhibitor of MAP-dependent microtubule assembly and, through the disruption of the microtubule spindle, specifically inhibits cell cycle progression at the M phase.

Related Organizations
Keywords

Indoles, Cell Cycle, tau Proteins, Fibroblasts, Microtubules, Piperazines, Indole Alkaloids, Rats, Tubulin, Animals, Cattle, Microtubule-Associated Proteins, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    213
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
213
Top 10%
Top 1%
Top 10%
bronze
Related to Research communities