Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carcinogenesis
Article . 2008 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2008
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers

Authors: Zienolddiny S; CAMPA, DANIELE; Lind H; Ryberg D; Skaug V; Stangeland LB; Canzian F; +1 Authors

A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers

Abstract

Lung cancer is a leading cause of cancer mortality worldwide with smoking and occupational exposure to carcinogenic compounds as the major risk factors. Susceptibility to lung cancer is affected by existence of polymorphic genes controlling the levels of metabolic activation and detoxification of carcinogens. We have investigated 105 single nucleotide polymorphisms (SNPs) in 31 genes from the phase I and phase II metabolism genes and antioxidant defense genes for association with the risk of non-small cell lung cancer (NSCLC) in a Norwegian population-based study. Our results indicate that several SNPs in the phase I genes, CYP1B1, CYP2D6, CYP2E1 and CYP3A4, are associated with the risk of NSCLC. Moreover, significant associations with multiple SNPs in the phase II genes ALDH2, COMT, EPHX1, SOD2, NAT1, NAT2, GSTM3, GSTP1, GSTT2 and MPO were also found. We prioritized our findings by use of two different recently developed Bayesian statistical tools, employing conservative prior probabilities of association. When we corrected for multiple testing using these statistical tools, three novel associations of NSCLC risk with SNPs in the CYP1B1 (Arg48Gly), COMT (Val158Met) and GSTT2 (Met139Ile) genes were found noteworthy. However, only four of the previously reported associations with polymorphisms in the GSTP1 (Ala14Val), SOD2 (Val16Ala), EPHX1 (His139Arg) genes and the NAT1 fast acetylator phenotype remained significantly associated with lung cancer.

Keywords

Adult, Aged, 80 and over, Male, Lung Neoplasms, Smoking, Methyltransferases, Middle Aged, Polymorphism, Single Nucleotide, Xenobiotics, Cytochrome P-450 Enzyme System, Acetyltransferases, Risk Factors, Carcinoma, Non-Small-Cell Lung, Humans, Female, Genetic Predisposition to Disease, Aged, Glutathione Transferase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research