<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1063/1.5090795
We present the structure and anisotropic magnetic and electrical transport properties on the flux-grown PrAlGe single crystal, a recently proposed magnetic Weyl semimetal candidate. From the powder and single-crystal x-ray diffraction analysis, the grown crystal is revealed to crystallize in tetragonal LaPtSi-type structure with space group of I41md. The PrAlGe exhibits strong Ising-type magnetic anisotropy with ferromagnetic moments ∼2.32μB/Pr along easy c-axis below transition temperature Tc ∼ 15 K. Accordingly, anomalous Hall effect (AHE) is observed for field (H) along c axis in contrast to a axis, and large anomalous Hall conductivity value reaches up to ∼680 Ω−1 cm−1 close to the theoretical expected value based on intrinsic Berry-curvature mechanism. Moreover, the linear scaling behaviors between the anomalous Hall resistivity and longitudinal resistivity also support the intrinsic Karplus-Luttinger mechanism as a dominant role on the observed AHE rather than extrinsic scattering mechanism.
Physics, QC1-999, TP248.13-248.65, Biotechnology
Physics, QC1-999, TP248.13-248.65, Biotechnology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |