Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Epilepsy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Epilepsy Research
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2008
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2008
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2008
Data sources: CNR ExploRA
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autosomal dominant lateral temporal epilepsy: Absence of mutations in ADAM22 and Kv1 channel genes encoding LGI1-associated proteins

Authors: Erica Diani; Carlo Di Bonaventura; MECARELLI, Oriano; Antonio Gambardella; Maurizio Elia; Giorgia Bovo; Francesca Bisulli; +15 Authors

Autosomal dominant lateral temporal epilepsy: Absence of mutations in ADAM22 and Kv1 channel genes encoding LGI1-associated proteins

Abstract

Mutations in the LGI1 gene are linked to autosomal dominant lateral temporal epilepsy (ADTLE) in about half of the families tested, suggesting that ADLTE is genetically heterogeneous. Recently, the Lgi1 protein has been found associated with different protein complexes and two distinct molecular mechanisms possibly underlying ADLTE have been hypothesized: the one recognizes Lgi1 as a novel subunit of the presynaptic Kv1 potassium channel implicated in the regulation of channel inactivation, the other suggests that Lgi1 acts as a ligand that selectively binds to the postsynaptic receptor ADAM22, thereby regulating the glutamate-AMPA neurotransmission. Both mechanisms imply that LGI1 mutations result in alteration of synaptic currents, though of different types. Since their protein products have been found associated with Lgi1, the Kv1 channel subunit genes KCNA1, KCNA4, and KCNAB1 and ADAM22 can be considered strong candidates for ADLTE. We sequenced their coding exons and flanking splice sites in the probands of 9 carefully ascertained ADLTE families negative for LGI1 mutations. We failed to detect any mutation segregating with the disease, but identified several previously unreported polymorphisms. An association study of four non-synonymous variants (three found in ADAM22, one in KCNA4) in a population of 104 non-familial lateral temporal epilepsy cases did not show any modification of susceptibility to this disorder. Altogether, our results suggest that neither ADAM22 nor any of the three Kv1 channel genes are major causative genes for ADLTE.

Keywords

Male, DNA Mutational Analysis, Nerve Tissue Proteins, ADAM Proteins; genetics, DNA Mutational Analysis; methods, Epilepsy; Temporal Lobe; genetics, Family Health, Female, Genetic Testing; methods, Humans, Male, Middle Aged, Nerve Tissue Proteins; genetics, Polymorphism; Restriction Fragment Length, Proteins; genetics, Shaker Superfamily of Potassium Channels; genetics, adam22 receptor; association studies; autosomal dominant lateral temporal epilepsy; genetics; kv1 channel; lgi1, Genetics, Humans, Genetic Testing, Kv1 channel, Autosomal dominant lateral temporal epilepsy, Association studies, Family Health, ADAM22 receptor, Intracellular Signaling Peptides and Proteins, Proteins, Middle Aged, ADAM Proteins, Epilepsy, Temporal Lobe, Shaker Superfamily of Potassium Channels, LGI1, Female, Autosomal dominant lateral temporal epilepsy; Genetics; LGI1; Kv1 channel; ADAM22 receptor; Association studies, Polymorphism, Restriction Fragment Length

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!