Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Dynami...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gli3‐deficient mice exhibit cleft palate associated with abnormal tongue development

Authors: Ying Litingtung; Steven Goudy; Tatiana Ketova; Chin Chiang; Xi Huang;

Gli3‐deficient mice exhibit cleft palate associated with abnormal tongue development

Abstract

AbstractPalatogenesis depends on appropriate growth, elevation, and fusion of the palatal shelves and aberration in these processes can lead to palatal clefting. We observed a high incidence of palate clefting in mice deficient in Gli3, known for its role as a repressor in the absence of Shh signaling. In contrast with several current mouse models of cleft palate, Meckel's cartilage extension, cranial neural crest migration, palatal shelf proliferation, apoptosis, and key signaling components mediated by Shh, Bmp, Fgf, and Tgfβ, appeared unaffected in Gli3−/− mice. Palatal clefting in Gli3−/− mice was consistently associated with tongue abnormalities such as failure to flatten and improper positioning, implicating a critical role of Gli3 and normal tongue morphogenesis for timely palatal shelf elevation and joining. Furthermore, Gli3−/− palatal shelves grown in roller cultures without tongue can fuse suggesting that the abnormal tongue is likely an impediment for palatal shelf joining in Gli3−/− mutants. Developmental Dynamics 237:3079–3087, 2008. © 2008 Wiley‐Liss, Inc.

Related Organizations
Keywords

Mice, Knockout, Kruppel-Like Transcription Factors, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, In Vitro Techniques, Cleft Palate, Mice, Inbred C57BL, Mice, Tongue, Zinc Finger Protein Gli3, Mutation, Animals, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!