Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Brain R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Brain Research
Article . 1985 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat

Authors: G. Ahlsén; Fu-Sun Lo; S. Lindström;

Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat

Abstract

Inhibitory interactions between interneurones of the lateral geniculate nucleus (LGN) of the cat were studied with an indirect method based on intracellular recordings of synaptic responses in principal cells. Recurrent inhibitory postsynaptic potentials (IPSPs), evoked by antidromic activation of principal cell axons in the visual cortex, were depressed by a preceding stimulation of the optic tract or the visual cortex. Disynaptic feed-forward IPSPs, evoked by optic tract stimulation, were likewise depressed after cortex stimulation. The duration of the depression was in both cases about 100 ms. The effect was not due to conductance changes in the recorded principal cells or to activation of cortico-geniculate fibres. The observations indicate that perigeniculate neurones, the recurrent inhibitory interneurones of the LGN, have mutual inhibitory connexions and that they also project to intrageniculate interneurones, the inhibitory cells in the feed-forward pathway to principal cells. These conclusions were supported by intracellular recordings from a few interneurones. No evidence was found for interaction between feed-forward interneurones activated from separate eyes or for a projection from intrageniculate interneurones to perigeniculate cells. The results point to an unexpected similarity in the organization of the recurrent inhibitory system of principal cells in the LGN and of spinal motoneurones. It is suggested that the recurrent system of the LGN serves as a variable gain regulator in analogy with a recently proposed model for the spinal system.

Related Organizations
Keywords

Interneurons, Models, Neurological, Cats, Animals, Geniculate Bodies, Neural Inhibition, Visual Pathways, Evoked Potentials, Synaptic Transmission, Visual Cortex

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!