Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caveolin-1–Mediated Negative Signaling Plays a Critical Role in the Induction of Regulatory Dendritic Cells by DNA and Protein Coimmunization

Authors: Jinyao, Li; Shuang, Geng; Xiaoping, Xie; Hu, Liu; Guoxing, Zheng; Xiaolin, Sun; Gan, Zhao; +5 Authors

Caveolin-1–Mediated Negative Signaling Plays a Critical Role in the Induction of Regulatory Dendritic Cells by DNA and Protein Coimmunization

Abstract

Abstract Induction of Ag-specific regulatory T cells (iTregs) by vaccination is a promising strategy for treating autoimmune diseases. We previously demonstrated that DNA and protein covaccination converted naive T cells to Ag-specific iTregs by inducing CD11c+CD40lowIL-10+ regulatory dendritic cells (DCregs). However, it is unclear how coimmunization induces the DCregs. In this paper, we report that the event is initiated by coentry of sequence-matched DNA and protein immunogens into the same DC via caveolae-mediated endocytosis, which leads to inhibition of phosphorylation of caveolin-1 (Cav-1), the main component of caveolae, and upregulation of Tollip. This triggers downstream signaling that upregulates suppressor of cytokine signaling 1 and downregulates NF-κB and STAT-1α. Silencing either Cav-1 or Tollip blocks the negative signaling, leading to upregulated expression of CD40, downregulated production of IL-10, and loss of iTreg-inducing function. We further show that DCregs can be induced in culture from primary DCs and JAWS II DC lines by feeding them sequence-matched DNA and protein immunogens. The in vitro-generated DCregs are effective in ameliorating autoimmune and inflammatory diseases in several mouse models. Our study thus suggests that DNA and protein coimmunization induces DCregs through Cav-1– and Tollip-mediated negative signaling. It also describes a novel method for generating therapeutic DCregs in vitro.

Related Organizations
Keywords

Mice, Inbred BALB C, Caveolin 1, Intracellular Signaling Peptides and Proteins, Down-Regulation, Cell Differentiation, Dendritic Cells, Caveolae, Coculture Techniques, Endocytosis, Cell Line, Up-Regulation, Mice, Inbred C57BL, Mice, Vaccines, DNA, Animals, Female, RNA, Small Interfering, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%
bronze