Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JAMA Psychiatryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JAMA Psychiatry
Article
Data sources: UnpayWall
JAMA Psychiatry
Article . 2014 . Peer-reviewed
Data sources: Crossref
JAMA Psychiatry
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography

Authors: Marie Spies; Tatjana Traub-Weidinger; Anna Höflich; Rupert Lanzenberger; Siegfried Kasper; Andreas Hahn; Alexandra Kutzelnigg; +8 Authors

The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography

Abstract

Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system's contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD.To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls.Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups.The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest).We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41<0.01; P=.96). Furthermore, we identified no significant association between ADHD symptom severity and regional NET availability. Neither sex nor smoking status influenced NET availability. We determined a significant negative correlation between age and NET availability in the thalamus (R2=0.29; P<.01 corrected) and midbrain with pons, including the locus coeruleus (R2=0.18; P<.01 corrected), which corroborates prior findings of a decrease in NET availability with aging in the human brain.Our results do not indicate involvement of changes in brain NET availability or distribution in the pathogenesis of ADHD. However, the noradrenergic transmitter system may be affected on a different level, such as in cortical regions, which cannot be reliably quantified with this positron emission tomography ligand. Alternatively, different key proteins of noradrenergic neurotransmission might be affected.

Keywords

Adult, Male, Fluorine Radioisotopes, Norepinephrine Plasma Membrane Transport Proteins, Functional Neuroimaging, Morpholines, Age Factors, Brain, Young Adult, Attention Deficit Disorder with Hyperactivity, Case-Control Studies, Positron-Emission Tomography, Humans, Female, Symptom Assessment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze