Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Circulation Research
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intracellular Dyssynchrony of Diastolic Cytosolic [Ca 2+ ] Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure

Authors: Hohendanner, Felix; Ljubojevic, Senka; Macquaide, Niall; Sacherer, Michael; Sedej, Simon; Biesmans, Liesbeth; Wakula, Paulina; +7 Authors

Intracellular Dyssynchrony of Diastolic Cytosolic [Ca 2+ ] Decay in Ventricular Cardiomyocytes in Cardiac Remodeling and Human Heart Failure

Abstract

Rationale : Synchronized release of Ca 2+ into the cytosol during each cardiac cycle determines cardiomyocyte contraction. Objective: We investigated synchrony of cytosolic [Ca 2+ ] decay during diastole and the impact of cardiac remodeling. Methods and Results: Local cytosolic [Ca 2+ ] transients (1-µm intervals) were recorded in murine, porcine, and human ventricular single cardiomyocytes. We identified intracellular regions of slow (slowCaR) and fast (fastCaR) [Ca 2+ ] decay based on the local time constants of decay (TAU local ). The SD of TAU local as a measure of dyssynchrony was not related to the amplitude or the timing of local Ca 2+ release. Stimulation of sarcoplasmic reticulum Ca 2+ ATPase with forskolin or istaroxime accelerated and its inhibition with cyclopiazonic acid slowed TAU local significantly more in slowCaR, thus altering the relationship between SD of TAU local and global [Ca 2+ ] decay (TAU global ). Na + /Ca 2+ exchanger inhibitor SEA0400 prolonged TAU local similarly in slowCaR and fastCaR. FastCaR were associated with increased mitochondrial density and were more sensitive to the mitochondrial Ca 2+ uniporter blocker Ru360. Variation in TAU local was higher in pig and human cardiomyocytes and higher with increased stimulation frequency (2 Hz). TAU local correlated with local sarcomere relengthening. In mice with myocardial hypertrophy after transverse aortic constriction, in pigs with chronic myocardial ischemia, and in end-stage human heart failure, variation in TAU local was increased and related to cardiomyocyte hypertrophy and increased mitochondrial density. Conclusions: In cardiomyocytes, cytosolic [Ca 2+ ] decay is regulated locally and related to local sarcomere relengthening. Dyssynchronous intracellular [Ca 2+ ] decay in cardiac remodeling and end-stage heart failure suggests a novel mechanism of cellular contractile dysfunction.

Keywords

mitochondria, Pathologie générale, calcium, diastole, Physiologie générale, cardiac, heart failure, myocytes, ventricular remodeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities