Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computers
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computers
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AHA: Design and Evaluation of Compute-Intensive Hardware Accelerators for AMD-Xilinx Zynq SoCs Using HLS IP Flow

Authors: David Berrazueta-Mena; Byron Navas;

AHA: Design and Evaluation of Compute-Intensive Hardware Accelerators for AMD-Xilinx Zynq SoCs Using HLS IP Flow

Abstract

The increasing complexity of algorithms in embedded applications has amplified the demand for high-performance computing. Heterogeneous embedded systems, particularly FPGA-based systems-on-chip (SoCs), enhance execution speed by integrating hardware accelerator intellectual property (IP) cores. However, traditional low-level IP-core design presents significant challenges. High-level synthesis (HLS) offers a promising alternative, enabling efficient FPGA development through high-level programming languages. Yet, effective methodologies for designing and evaluating heterogeneous FPGA-based SoCs remain crucial. This study surveys HLS tools and design concepts and presents the development of the AHA IP cores, a set of five benchmarking accelerators for rapid Zynq-based SoC evaluation. These accelerators target compute-intensive tasks, including matrix multiplication, Fast Fourier Transform (FFT), Advanced Encryption Standard (AES), Back-Propagation Neural Network (BPNN), and Artificial Neural Network (ANN). We establish a streamlined design flow using AMD-Xilinx tools for rapid prototyping and testing FPGA-based heterogeneous platforms. We outline criteria for selecting algorithms to improve speed and resource efficiency in HLS design. Our performance evaluation across various configurations highlights performance–resource trade-offs and demonstrates that ANN and BPNN achieve significant parallelism, while AES optimization increases resource utilization the most. Matrix multiplication shows strong optimization potential, whereas FFT is constrained by data dependencies.

Related Organizations
Keywords

benchmark, Electronic computers. Computer science, design automation, FPGA-based accelerator, embedded systems, accelerator architectures, QA75.5-76.95, heterogeneous systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold